Statistical modeling of isoform splicing dynamics from RNA-seq time series data
نویسندگان
چکیده
MOTIVATION Isoform quantification is an important goal of RNA-seq experiments, yet it remains problematic for genes with low expression or several isoforms. These difficulties may in principle be ameliorated by exploiting correlated experimental designs, such as time series or dosage response experiments. Time series RNA-seq experiments, in particular, are becoming increasingly popular, yet there are no methods that explicitly leverage the experimental design to improve isoform quantification. RESULTS Here, we present DICEseq, the first isoform quantification method tailored to correlated RNA-seq experiments. DICEseq explicitly models the correlations between different RNA-seq experiments to aid the quantification of isoforms across experiments. Numerical experiments on simulated datasets show that DICEseq yields more accurate results than state-of-the-art methods, an advantage that can become considerable at low coverage levels. On real datasets, our results show that DICEseq provides substantially more reproducible and robust quantifications, increasing the correlation of estimates from replicate datasets by up to 10% on genes with low or moderate expression levels (bottom third of all genes). Furthermore, DICEseq permits to quantify the trade-off between temporal sampling of RNA and depth of sequencing, frequently an important choice when planning experiments. Our results have strong implications for the design of RNA-seq experiments, and offer a novel tool for improved analysis of such datasets. AVAILABILITY AND IMPLEMENTATION Python code is freely available at http://diceseq.sf.net CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
SURVIV for survival analysis of mRNA isoform variation
The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement...
متن کاملThe analytical landscape of static and temporal dynamics in transcriptome data
Interpreting gene expression profiles often involves statistical analysis of large numbers of differentially expressed genes, isoforms, and alternative splicing events at either static or dynamic spectrums. Reduced sequencing costs have made feasible dense time-series analysis of gene expression using RNA-seq; however, statistical methods in the context of temporal RNA-seq data are poorly devel...
متن کاملEstimation of Gene Expression at Isoform Level from mRNA-Seq Data by Bayesian Hierarchical Modeling
mRNA-Seq is a precise and highly reproducible technique for measurement of transcripts levels and yields sequence information of a transcriptome at a single nucleotide base-level thus enabling us to determine splice junctions and alternative splicing events with high confidence. Often analysis of mRNA-Seq data does not attempt to quantify the expressions at isoform level. In this paper our obje...
متن کاملClustering of mRNA-Seq data for detection of alternative splicing patterns
Current sequencing of mRNA can provide estimates of the levels of individual isoforms within the cell, where isoforms are the different distinct mRNA products or proteins created by a gene. It remains to adapt many standard statistical methods commonly used for analyzing gene expression levels to take advantage of this additional information. One novel question is whether we can find groupings ...
متن کاملRobust detection of alternative splicing in a population of single cells.
Single cell RNA-seq experiments provide valuable insight into cellular heterogeneity but suffer from low coverage, 3' bias and technical noise. These unique properties of single cell RNA-seq data make study of alternative splicing difficult, and thus most single cell studies have restricted analysis of transcriptome variation to the gene level. To address these limitations, we developed SingleS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 32 19 شماره
صفحات -
تاریخ انتشار 2016